
2025/03/15 01:09 1/7

GemsTracker - https://gemstracker.org/wiki/

Developer Zone

GemsTracker is a tool for tracking fixed sequences of surveys asked to groups of individuals or
organizations.

GemsTracker is not a tool for building and administrating surveys. For that specialized survey
software packages are used by GemsTracker, with LimeSurvey as the first among equals.

GemsTracker is a tool that allows:

follow up surveys surveys dependent on answers in previous surveys multiple people to answer
surveys concerning one person different sequences of surveys (i.e. tracks) assigned to different
people For developers it offers a broad library of web pages that can be easily extended or overridden
on a per project basis.

Working with the GemsTracker library can sometimes be difficult. We have a rich API documentation
but sometimes you need a little bit more to get you going. This is the right place to start searching or
adding your own information.

GemsTracker is developed to allow you to quickly and easily adapt it to the demands of specific
projects. We quickly found out that almost every project has different data demands for respondents.
I.e. some projects need a respondents postal address, others need only a birthday while requiring
their fathers birthday as well. For this reason GemsTracker uses a separate project application
directory that can extend, change and overrule almost any feature of the core GemsTracker libraries.

GemsTracker itself is built on other software, both open source as well as commercial. This page
describes all these layers:

Application / Project layer: your own code (optional) GemsTracker Layer: GemsTracker and
(optionally) LimeSurvey Programming language layer: PHP and the Zend Framework Server software
layer: Apache or IIS and MySQL OS layer: Unix, Linux or Windows Server or Workstation The last three
layers are described first in the Software requirements. Next comes an overview of the GemsTracker
Core and lastly the How to's to get started with adapting the software for a specific project.

Software requirements

GemsTracker is built in PHP 5.3 on top of the Zend Framework and uses MySQL 5. The development
team runs software runs the software on both Windows and Unix systems using both Apache 2 and IIS
7 as servers. Additional web publication environments that support PHP 5.3 and MySQL should work,
but we have not tested them so you are on your own.

To use GemsTracker you need:

a working Webserver (Apache or IIS) PHP 5.3 or higher Zend Framework 1.11 or higher access to a
database on a MySQL server version 5 or higher (optionally) a LimeSurvey 1.90 or higher installation
GemsTracker is built with a plug-in survey engines, but the only survey engine currently available in
open source is Lime Survey. At least one other survey systems has been implemented but it is not
available in open source.

The GemsTracker Core

Last update: 2020/03/12 12:08 devpage:start https://gemstracker.org/wiki/doku.php?id=devpage:start&rev=1341929784

https://gemstracker.org/wiki/ Printed on 2025/03/15 01:09

GemsTracker is a library that extends the Zend Framework libraries, but also supplies a standard new
project template.

A new project

GemsTracker supplies a default new_project installation that allows you to quickly setup a standard
project. The package contains these directories:

application Project specific code and settings classes Project specific classes configs Project specific
Zend Framework, GemsTracker and database configuration files controllers (Optional) Project specific
Zend FW controllers events (Optional) Project specific track engine events languages (Optional)
Overrule the default translations layouts (Optional) Project specific Zend FW layouts snippets
(Optional) Project specific code that generates Html views (Optional) Project specific Zend FW views
htdocs The webroot of the project gems Default GemsTracker css, images and jQuery library The
location for the GemsTracker library and optionally the Zend FrameWork? Gems The GemsTracker
library directory, link to a stable release or to our development branch var A writable directory for files
that can change after installation cache Cache and sessions logs Error logs settings File locks and
other installation dependent settings uploads Pdf's ant other uploadable files The library

GemsTracker is implemented as a separate library. You should either link to a stable tagged release
and not change the code, or if you are involved in the project you can develop against the
GemsTracker trunk.

The directory structure is based on the standard Zend Framework project directory structure with
some extensions.

classes The main project code configs Database definitions for project types controllers Zend FW
Controllers stubs that can be overruled by a project docs Some documentation languages Default
translations (currently Dutch and English) layouts GemsTracker default Zend FW layouts snippets
Code that generates reuseable Html fragments / snippets views GemsTracker default Zend FW views
(but very empty for a Zend project) GemsTracker builds on the Zend Framework but does not follow
in slavishly. Some changes are caused by the requirement that standard code can be overruled at the
project level. Other changes were made because we want to extend the Zend Framework (but did not
yet get round to the extensive documentation and unit testing required by the framework). These two
types of extensions are easily distinguished by their parent directories within the classes directory:

Gems The core of GemsTracker MUtil Possible extensions to Zend, should not be Gems specific
ZFDebug A Google build debug extension for Zend Zend Those extreme exceptions where we really
had to fix a Zend bug (currently only one) GemsEscort.php The Zend Bootstrap object for
GemsTracker. This object handles initialization, layout and security. The GemsEscort? object must be
overloaded at the project level. For Gems and MUtil we generated API documentation, but here we will
describe their effect on Zend Framework development.

The MUtil extensions

MUtil stand for MagnaFacta? Utilities. MagnaFacta is one of the companies hired to develope
GemsTracker.

When a MUtil directory has the same name as an existing Zend directory it usually concerns a simple
extension of that Zend component. E.g. the Markup directory contains an extension that renders e.g.
BB or Wiki code to flat text. Always useful if you want to include a text version for smartphone with an
HTML e-mail message. The Potemkin Translate adapter allows you to act as if there is a translator,
without defining any.

2025/03/15 01:09 3/7

GemsTracker - https://gemstracker.org/wiki/

However some other default extensions are more important:

Application Extends the Zend Bootstrap object to an Escort object that allows .NET like event function
use during the whole application request cycle. Controller Extends the standard Action to include the
use of new Html, Models and Snippets components Form Provided extensions for using both tabbed
and tabled forms, improved focus handling and use of the Html component. Other directories extend
the framework. These can be divided in two sets, high-level and low-level. We start with the low level
extensions. The low-level do not adapt the Zend Framework, but enable the other extensions:

Lazy Delayed execution, think callable with parameters and repetition Parser An SQL parser for SQL
script processing Ra Array and parameter processing functions Registry Automated object parameter
loading using a registry Util Programmer extendable functionality (e.g. for factory functions in Ra,
Html and Snippets) The high level packages are the ones that make a GemsTracker a non standard
Zend Application:

Html Simple extendable HTML classes using Lazy repetition and Ra parameters Model The M in Model
View Controller. Describe labeling, display formatting, validating, etc… for non-db or db-based data
sets Snippets Quickly create reusable HTML fragments from code. Use of Html, Model and Registry is
prepared but not required The Gems extension

Most components in Gems extend a Zend or MUtil component adding functionality specific to
GemsTracker, without adding any significant changes to the existing workings of those components.
The exceptions fall in two broad categories: those that enable extensions and changes at the project
level and those that form the core of GemsTracker.

Project level extensibility GemsTracker tries to give a programmer as much freedom as necessary to
change the core workings at the project level, without the programmer having to change or copy the
core GemsTracker library. Default Standard controllers, for easy overloading of controllers at the
project level Loader Allow 'mirrored' project level objects to be loaded instead of Gems level objects
Project Choose multi-layout, multi-organization, logging level and track types GemsTracker
functionality Communication (SOAP) communication with external applications Event Survey or track
specific code triggered before or after a survey is taken Export Data export for scientific analysis
Menu The application menu, of course adaptable at the project level Tracker THE CORE: integration
with survey sources, track engines and token display User Extensible, role based user authentication
and authorization How to's

The Zend Framework may or may not be an easy framework for PHP development, but a GemsTracker
project can be adapted without deep knowledge of the Framework. Of course when a project needs
extensive adaptations (e.g. a separate survey engine or intensive integration with other applications)
knowledge of the Zend Framework becomes necessary, but there is no need to dive in at the deep
end of the framework.

Here are some examples of common extensions.

How do I get started

Follow the steps in the Quickstart guide.

How do I create my own controller

Check Zend FW Quickstart for an intro on controllers and their names and to get an introduction to
the Zend naming conventions and project setup.

Last update: 2020/03/12 12:08 devpage:start https://gemstracker.org/wiki/doku.php?id=devpage:start&rev=1341929784

https://gemstracker.org/wiki/ Printed on 2025/03/15 01:09

Most GemsTracker controllers use a Model (i.e. display and browse one set of data) and inherit from
either Gems_Controller_ModelSnippetActionAbstract (the newer solution) or
Gems_Controller_BrowseEditAction (old solution). Check Gems_Default_StaffAction for an example of
the first and Gems_Default_GroupAction for the second type of standard controller.

In other cases, e.g. when you just want to output some (mostly) fixed HTML, you can use
'Gems_Controller_Action' as a template. Gems_Default_ContactAction is a good example.

Of course you can also use your existing Zend controller. All Zend application variables will be set

Do not mirror the directory location from the Gemstracker library. The classes/Gems/Default' location
is used to ease the adaptation of existing controllers at the project level. Use insteaf the Zend
Framework method of creating xxxController with same filename and object name in
application/controllers`.

How do I add my own controller to the menu?

You successfully created your HelloController?, but the you called the World action and Gems tells you
you are not allowed to access the page. This is because all access to pages is controlled through the
Menu object. GemsTracker has a default menu, but you can change it to suite your needs.

Go to the /application/classes/[project name]/Menu.php file and create/edit the loadProjectMenu()
function.

 public function loadProjectMenu()
 {
 // Hello world page
 $this->addPage('Hello', null, 'hello', 'world');
 }

And voila: 'Hello' appears as a menu choice and you can select the controller.

The definitive place to check the workings of the addPage() function is of course the API
documentation (for Gems/Menu/MenuAbstract→addPage()) or to load the source in your program
editor. But here is how the addPage function works.

parameters label The label for display in the menu, leave null when used, but not displayed in the
menu. privilege When empty the action is always accessible, specify 'pr.islogin'/'pr.nologin' when a
user must/must not be logged in. Specify your own string when you want te set the privilege yourself
for specific application roles. controller The name of the new controller. action The name of the action
or 'index' by default. other An optional array for advanced usage. You should really have a look at the
API documentation. return: a Gems_Menu_SubMenuItem object where you can specify sub items So
putting it together you can add something more complicated.

 public function loadProjectMenu()
 {
 // Hello world page
 // - always accessible
 // - move to top of menu using 'order'
 $page = $this->addPage('Hello', null, 'hello', 'index', array(
 'order' => 0 // Put this page at the top of the menu
));

http://www.php.net/array

2025/03/15 01:09 5/7

GemsTracker - https://gemstracker.org/wiki/

 // Add sub-page for logged in user
 $page->addPage('You', 'pr.islogin', 'hello', 'you');

 // Add sub-page for when not logged in
 $page->addPage('World', 'pr.nologin', 'hello', 'World);

 // Add sub-page for roles that you gave the my.secret privilege
 $page->addPage('Secret', 'my.secret', 'hello', 'secret');

 // Add sub-page for everybody
 $page->addPage('Everybody', null, 'hello', 'everybody');

 // Add sub-page that is not displayed, but that you can access when
you know the url
 $page->addPage(null, null, 'hello', 'hidden');
 }

How do I change the displayed columns in the respondent/patient overview?

As every project has it's own data to work on, one of the most common actions is to change the
display of the columns shown in the Respondents/Patients screen.

First to explain why we sometimes talk about respondents and sometimes about patients. Of course a
respondent is someone who either answers a survey or about whom a survey is answered by
someone else. Either way the survey belongs to that respondent. A patient is of course someone who
receive health care. As GemsTracker is build for health care institutions in most existing projects
respondents are patients, but there is no reason why they could not be truckers, butchers, mail man
or just any other group of random respondents. That is why internally GemsTracker revers to
respondents (we even hunt down the use of the word patient in the core library) but use a default
English translation that does not but translate 'respondent' into 'patient'.

To change the displayed columns copy library/Gems/controllers/RespondentController.php' to
application/controllers/RespondentController.php'. GemsTracker automatically sees the new
RespondentController.php file and starts using that controller. RespondentController.php is an empty
stub that inherits all functionality from Gems_Default_RespondentAction. This allows you to overrule
or extend the default functionality without have to copy the code, with all the maintenance issues this
entails.

Now your first thought might be that to change the workings of the 'index' action you must overrule
the indexAction() function, but the search as you type function returns a result from autofilterAction()
and column content is added in the protected _createTable() function that is used by both functions.
However, the actual action of specifying what columns have to be displayed is done in the
addBrowseTableColumns() function overloaded in RespondentAction. To change the columns you
must overload this function again in your copy of RespondentController.

Now you might have noticed that the Respondent index screen displays quite a complicated table.
The data is displayed in rows, but most cells have two lines in them, e-mail addresses are links when
they exists, there are some extra texts that appear only when needed. There is a paginator, you can
change the number of rows, the headers are sort links. There are buttons on the sides and if you click
on a row, it acts as if the first button was clicked. You noticed all that? Thank you! Did you also notice
that you can use the Page Up and Page Down keys to browse, Ctrl Up and Ctrl Down to see more or

Last update: 2020/03/12 12:08 devpage:start https://gemstracker.org/wiki/doku.php?id=devpage:start&rev=1341929784

https://gemstracker.org/wiki/ Printed on 2025/03/15 01:09

less rows, and use the normal arrow keys to select a row and then press enter to open it? Thought
not. Well that all works too.

It must take hundreds of lines of code to write it, no? Well yes, it does take hundreds of lines, but if
we look in RespondentAction we see the code actually written in the function is quite limited. All the
magic work is done by the TableBridge and AbstractModel objects.

 protected function addBrowseTableColumns(MUtil_Model_TableBridge
$bridge, MUtil_Model_ModelAbstract $model)
 {
 $model->setIfExists('gr2o_opened', 'tableDisplay', 'small');
 $model->setIfExists('grs_email', 'itemDisplay',
'MUtil_Html_AElement::ifmail');

 if ($menuItem = $this->findAllowedMenuItem('show')) {
$bridge->addItemLink($menuItem->toActionLinkLower($this->getRequest(),
$bridge));
 }

 // Newline placeholder
 $br = MUtil_Html::create('br');

 // Display separator and phone sign only if phone exist.
 $phonesep = $bridge->itemIf($bridge->grs_phone_1,
MUtil_Html::raw('☏ '));
 $citysep = $bridge->itemIf($bridge->grs_zipcode,
MUtil_Html::raw(' '));

 $bridge->addMultiSort('gr2o_patient_nr', $br, 'gr2o_opened');
 $bridge->addMultiSort('name', $br, 'grs_email');
 $bridge->addMultiSort('grs_address_1', $br, 'grs_zipcode',
$citysep, 'grs_city');
 $bridge->addMultiSort('grs_birthday', $br, $phonesep,
'grs_phone_1');

 if ($menuItem = $this->findAllowedMenuItem('edit')) {
$bridge->addItemLink($menuItem->toActionLinkLower($this->getRequest(),
$bridge));
 }
 }

This function combines all the power op the MUtil Html, Lazy and Model components combined with
the Gems Menu object. Thankfully you do not need to know all these objects well to work with them.

E.g. the two if () statements are just the way a menu item choice is added. Copy the code and it will
work. Remove it and the buttons disappears. The buttons will also disappear when you login as a user
that may not use them. Usually that is the way to go with menu items.

The model is in this case actually a Gems_Model_RespondentModel, which is a database using
JoinModel that combines multiple tables. It was created by the function
RespondentAction→createModel(), that uses the Gems_Model→getRespondentModel() function to

2025/03/15 01:09 7/7

GemsTracker - https://gemstracker.org/wiki/

create the model. The extendability of GemsTracker is best demonstrated by the fact that you can
change this model both in the addBrowseTableColumns() function and in all the other functions or
create a YourProject_Model_RespondentModel and it all works.

The 'grs_' and 'gr2o_' strings you see are field names in the tables gemsrespondents and
gemsrespondent2org table that are both in the respondent model. name is the name of an SQL
column added to the model that displays the result of an SQL expression that just so happens to
return the full name of the respondent. The variables are just constants, though with some magic
Lazy functionality in the itemif() function.

The addMultiSort() functions add a cell to the $bridge (that is used to form a bridge between an HTML
table and a model). Add a field name that exists in the model and it will be displayed in that column.
Add a MUtil_Html::raw() object to add fixed text. Just experiment with commenting field on or off and
you will quickly get the result you want.

From:
https://gemstracker.org/wiki/ - GemsTracker

Permanent link:
https://gemstracker.org/wiki/doku.php?id=devpage:start&rev=1341929784

Last update: 2020/03/12 12:08

https://gemstracker.org/wiki/
https://gemstracker.org/wiki/doku.php?id=devpage:start&rev=1341929784

	Developer Zone

