
2024/05/18 13:21 1/9 How to

GemsTracker - https://gemstracker.org/wiki/

How to

The Zend Framework may or may not be an easy framework for PHP development, but a GemsTracker
project can be adapted without deep knowledge of the Framework. Of course when a project needs
extensive adaptations (e.g. a separate survey engine or intensive integration with other applications)
knowledge of the Zend Framework becomes necessary, but there is no need to dive in at the deep
end of the framework.

Here are some examples of common extensions.

How do I get started

Follow the steps in the Quickstart guide.

Getting started using events

getting_started_with_gemstracker_events

How do I debug the code

When you start nosing around in the code or start making changes to the code you often want to
display some feedback on the page about what is going on or the content of variable.

A general method to get some idea of what is going is uncomment the _initZFDebug() function in
GemsEscort.php. This will add the ZFDebug information panel to the output, showing such
information as which SQL queries where performed and what variables and files where used.

A more specific method is to use the MUtil_Echo module to output specific variables to the screen.
The output of MUtil_Echo is stored in the session, so you can add output to MUtil_Echo and then
redirect the page and still get the output displayed on the final page that is really shown. The output
is displayed in a separate box at the bottom of the page.

MUtil_Echo::track($var1[, $var2, …]); is the easiest to use as it outputs the filename,
optional function name and line number of the function that called track() and then the content of
the variables passed.

MUtil_Echo::backtrace(); displays a complete backtrace of the current line of code.

The functions MUtil_Echo::pre();, MUtil_Echo::r(); and MUtil_Echo::rs(); output only
the code passed on to the functions and give more control in how the output is displaued. E.g. pre()
wordwraps the output at 120 characters and displays it in a <pre> element.

https://gemstracker.org/wiki/doku.php?id=userzone:quickstart
https://gemstracker.org/wiki/doku.php?id=devzone:giftbox:getting_started_with_gemstracker_events

Last update: 2020/03/12 12:08 devzone:howto:start https://gemstracker.org/wiki/doku.php?id=devzone:howto:start&rev=1547633080

https://gemstracker.org/wiki/ Printed on 2024/05/18 13:21

How do I create my own controller

Check Zend FW Quickstart for an intro on controllers and their names and to get an introduction to
the Zend naming conventions and project setup.

Most GemsTracker controllers use a Model (i.e. display and browse one set of data) and inherit from
either Gems_Controller_ModelSnippetActionAbstract (the newer solution) or
Gems_Controller_BrowseEditAction (old solution). Check Gems_Default_StaffAction for
an example of the first and Gems_Default_GroupAction for the second type of standard controller.

In other cases, e.g. when you just want to output some (mostly) fixed HTML, you can use
Gems_Controller_Action as a template. Gems_Default_ContactAction is a good example.

Of course you can also use your existing Zend controller. All Zend application variables will be set

Do not mirror the directory location from the GemsTracker library. The classes/Gems/Default
location is used to ease the adaptation of existing controllers at the project level. Use instead the
Zend Framework method of creating xxxController with same filename and object name in
application/controllers.

How do I add my own controller to the menu?

You successfully created your HelloController?, but the you called the World action and Gems tells you
you are not allowed to access the page. This is because all access to pages is controlled through the
Menu object. GemsTracker has a default menu, but you can change it to suite your needs.

Go to the /application/classes/[project name]/Menu.php file and create/edit the loadProjectMenu()
function.

 public function loadProjectMenu()
 {
 // Hello world page
 $this->addPage('Hello', null, 'hello', 'world');
 }

And voila: 'Hello' appears as a menu choice and you can select the controller.

The definitive place to check the workings of the addPage() function is of course the API
documentation (for Gems/Menu/MenuAbstract→addPage()) or to load the source in your program
editor. But here is how the addPage function works.

parameters label The label for display in the menu, leave null when used, but not displayed in the
menu. privilege When empty the action is always accessible, specify 'pr.islogin'/'pr.nologin' when a
user must/must not be logged in. Specify your own string when you want te set the privilege yourself
for specific application roles. controller The name of the new controller. action The name of the action
or 'index' by default. other An optional array for advanced usage. You should really have a look at the
API documentation. return: a Gems_Menu_SubMenuItem object where you can specify sub items So
putting it together you can add something more complicated.

2024/05/18 13:21 3/9 How to

GemsTracker - https://gemstracker.org/wiki/

 public function loadProjectMenu()
 {
 // Hello world page
 // - always accessible
 // - move to top of menu using 'order'
 $page = $this->addPage('Hello', null, 'hello', 'index', array(
 'order' => 0 // Put this page at the top of the menu
));

 // Add sub-page for logged in user
 $page->addPage('You', 'pr.islogin', 'hello', 'you');

 // Add sub-page for when not logged in
 $page->addPage('World', 'pr.nologin', 'hello', 'World);

 // Add sub-page for roles that you gave the my.secret privilege
 $page->addPage('Secret', 'my.secret', 'hello', 'secret');

 // Add sub-page for everybody
 $page->addPage('Everybody', null, 'hello', 'everybody');

 // Add sub-page that is not displayed, but that you can access when
you know the url
 $page->addPage(null, null, 'hello', 'hidden');
 }

How do I change the displayed columns in the
respondent/patient overview?

As every project has it's own data to work on, one of the most common actions is to change the
display of the columns shown in the Respondents/Patients screen.

First to explain why we sometimes talk about respondents and sometimes about patients. Of course a
respondent is someone who either answers a survey or about whom a survey is answered by
someone else. Either way, the survey belongs to that respondent. A patient is of course someone who
receives health care. In most existing projects GemsTracker is build for health care institutions, and
so respondents are patients, but there is no reason why they could not be truckers, butchers, mail
man or just any other group of respondents. That is why internally GemsTracker refers to respondents
(we even hunt down the use of the word patient in the core library) but use a default English
translation that does not but translate 'respondent' into 'patient'.

To change the displayed columns copy library/Gems/controllers/RespondentController.php' to
application/controllers/RespondentController.php'. GemsTracker automatically sees the new
RespondentController.php file and starts using that controller. RespondentController.php is an empty
stub that inherits all functionality from Gems_Default_RespondentAction. This allows you to overrule
or extend the default functionality without having to copy the code, with all the maintenance issues
this entails.

Now your first thought might be that to change the workings of the 'index' action you must overrule

http://www.php.net/array

Last update: 2020/03/12 12:08 devzone:howto:start https://gemstracker.org/wiki/doku.php?id=devzone:howto:start&rev=1547633080

https://gemstracker.org/wiki/ Printed on 2024/05/18 13:21

the indexAction() function, but the search as you type function returns a result from autofilterAction()
and column content is added in the protected _createTable() function that is used by both functions.
However, the actual action of specifying what columns have to be displayed is done in the
addBrowseTableColumns() function overloaded in RespondentAction. To change the columns you
must overload this function again in your copy of RespondentController.

Now you might have noticed that the Respondent index screen displays quite a complicated table.
The data is displayed in rows, but most cells have two lines in them, e-mail addresses are links when
they exists, there are some extra texts that appear only when needed. There is a paginator, you can
change the number of rows, the headers are sort links. There are buttons on the sides and if you click
on a row, it acts as if the first button was clicked. You noticed all that? Thank you! Did you also notice
that you can use the Page Up and Page Down keys to browse, Ctrl Up and Ctrl Down to see more or
less rows, and use the normal arrow keys to select a row and then press enter to open it? Thought
not. Well that all works too.

It must take hundreds of lines of code to write it, no? Well yes, it does take hundreds of lines, but if
we look in RespondentAction we see the code actually written in the function is quite limited. All the
magic work is done by the TableBridge and AbstractModel objects.

 protected function addBrowseTableColumns(MUtil_Model_TableBridge
$bridge, MUtil_Model_ModelAbstract $model)
 {
 $model->setIfExists('gr2o_opened', 'tableDisplay', 'small');
 $model->setIfExists('grs_email', 'itemDisplay',
'MUtil_Html_AElement::ifmail');

 if ($menuItem = $this->findAllowedMenuItem('show')) {
$bridge->addItemLink($menuItem->toActionLinkLower($this->getRequest(),
$bridge));
 }

 // Newline placeholder
 $br = MUtil_Html::create('br');

 // Display separator and phone sign only if phone exist.
 $phonesep = $bridge->itemIf($bridge->grs_phone_1,
MUtil_Html::raw('☏ '));
 $citysep = $bridge->itemIf($bridge->grs_zipcode,
MUtil_Html::raw(' '));

 $bridge->addMultiSort('gr2o_patient_nr', $br, 'gr2o_opened');
 $bridge->addMultiSort('name', $br, 'grs_email');
 $bridge->addMultiSort('grs_address_1', $br, 'grs_zipcode',
$citysep, 'grs_city');
 $bridge->addMultiSort('grs_birthday', $br, $phonesep,
'grs_phone_1');

 if ($menuItem = $this->findAllowedMenuItem('edit')) {
$bridge->addItemLink($menuItem->toActionLinkLower($this->getRequest(),
$bridge));
 }

2024/05/18 13:21 5/9 How to

GemsTracker - https://gemstracker.org/wiki/

 }

This function combines all the power of the MUtil Html, Lazy and Model components combined with
the Gems Menu object. Thankfully you do not need to know all these objects well to work with them.

E.g. the two if () statements are just the way a menu item choice is added. Copy the code and it will
work. Remove it and the buttons disappear. The buttons will also disappear when you login as a user
that may not use them. Usually that is the way to go with menu items.

The model is in this case actually a Gems_Model_RespondentModel, which is a database using
JoinModel that combines multiple tables. It was created by the function
RespondentAction→createModel(), that uses the Gems_Model→getRespondentModel() function to
create the model. The extendability of GemsTracker is best demonstrated by the fact that you can
change this model both in the addBrowseTableColumns() function and in all the other functions or
create a YourProject_Model_RespondentModel and it all works.

The 'grs_' and 'gr2o_' strings you see are field names in the gemsrespondents and
gemsrespondent2org tables that are both in the respondent model. And 'name' is the name of an SQL
column added to the model that displays the result of an SQL expression that just so happens to
return the full name of the respondent. The variables are just constants, though with some magic
Lazy functionality in the itemif() function.

The addMultiSort() functions add a cell to the $bridge (that is used to form a bridge between an HTML
table and a model). Add a field name that exists in the model and it will be displayed in that column.
Add a MUtil_Html::raw() object to add fixed text. Just experiment with commenting field on or off and
you will quickly get the result you want.

Hiding fields is accomplished by adding the fields again without a label.

How do I add a column in the respondent/patient details and
overview?

Now lets do this hands-on. For example, you want to administer a studycode with every respondent.
This field will have at most 10 string characters, and an index will speed up sorting actions on this
field.
In SQL code it looks like this:

 -- GEMS VERSION: [yourversion]
 -- PATCH: add a field for studycode
 ALTER TABLE `gems__respondents` ADD `grs_studycode` VARCHAR(10)
CHARACTER SET utf8 COLLATE utf8_general_ci NULL AFTER `grs_phone_2` ;
 ALTER TABLE `gems__respondents` ADD INDEX `grs_studycode` (
`grs_studycode`);

Create a file patches.sql with this code in application\configs\db\tables1.
run the code in this patch as super in your application (setup - database - execute new - yes) →2.
your table should be updated.
Sloppy alternative: you can run the sql code from phpMyAdmin.
For a new project installation you can alter the gems_respondents.30.php file in the same

Last update: 2020/03/12 12:08 devzone:howto:start https://gemstracker.org/wiki/doku.php?id=devzone:howto:start&rev=1547633080

https://gemstracker.org/wiki/ Printed on 2024/05/18 13:21

directory and use that to create your new tables in Gemstracker.

This is the 'old school' (GemsTracker version < 1.6.0) version: (could still work in newer versions, no
guarantees)

copy library\Gems\controllers\RespondentAction.php to1.
application\controllers\RespondentController.php
copy the class code in library\Gems\classes\Gems\Default\RespondentAction.php to this2.
new RespondentController
change3.

 class RespondentController extends Gems_Default_RespondentNewAction

to

class RespondentController extends Gems_Default_RespondentAction

In this controller, you need to change 3 functions: createModel, addFormElements and4.
addBrowsetableColumns

In function createModel, after line 2 (just before the 'if ($detailed)' line) insert this code in order
to add your field to the model (dataset):

 $model = $this->loader->getModels()->getRespondentModel($detailed);
 $model->setIfExists('grs_studycode', 'label',
$this->_('Studycode'));

in addFormElements, insert the next line at the position where you want your field to appear:

 $bridge->addText('grs_studycode', 'label',
$this->_('Studycode'), 'size', 10, 'maxlength', 10);

(usually after the line beginning with $bridge→addText('gr2o_patient_nr', …)

in addBrowseTableColumns insert this code:

 $bridge->addMultiSort('grs_studycode');

just before the line with $bridge→addMultiSort('gr2o_patient_nr', $…

This is the current method (1.6.0 and newer, where more is adapted in the model):

Adjust the RespondentModel.php file in application\classes\[YourProject]\Models1.
be sure to have the class name changed as needed for your project2.
Insert this code to change the browse display:3.

 /**
 * Set those settings needed for the browse display
 *
 * @return \Gems_Model_RespondentModel
 */
 public function applyBrowseSettings()

2024/05/18 13:21 7/9 How to

GemsTracker - https://gemstracker.org/wiki/

 {
 parent::applyBrowseSettings();

 $translator = $this->translate->getAdapter();
 $this->set('grs_studycode', 'label',
$translator->_('Studycode'));

 return $this;
 }

change the applyDetailsSettings function to this:4.

 public function applyDetailSettings($locale = null)
 {
 parent::applyDetailSettings($locale);

 $translator = $this->translate->getAdapter();
 $order = $this->getOrder('grs_last_name') + 1;

 $this->set('grs_studycode', 'label',
$translator->_('Studycode'),
 'order', $order++,
 'tab', $this->get('gr2o_patient_nr', 'tab'));

 return $this;
 }

Change the applyEditSettings function to this:5.

 public function applyEditSettings($locale = null)
 {
 parent::applyEditSettings($locale);

 $translator = $this->getTranslateAdapter();
 $this->set('grs_studycode','required', true);
 /*
 $this->set('grs_studycode',
 'validators[regex]', new Zend_Validate_Regex('/^d+/'),
 'validators[unique]',
$this->createUniqueValidator('grs_studycode') //,
array('gr2o_id_organization'))
);
 // */

 return $this;
 }

in application/controllers/RespondentController.php add this code to the6.
RespondentController class:

 /**
 * Set column usage to use for the browser.

Last update: 2020/03/12 12:08 devzone:howto:start https://gemstracker.org/wiki/doku.php?id=devzone:howto:start&rev=1547633080

https://gemstracker.org/wiki/ Printed on 2024/05/18 13:21

 *
 * Must be an array of arrays containing the input for
TableBridge->setMultisort()
 *
 * @return array or false
 */
 public function getBrowseColumns()
 {
 $columns = array(5 => array('grs_studycode',
MUtil_Html::create('br'))) + parent::getBrowseColumns();

 // unset($columns[20]);

 return $columns;
 }

add path and file7.
application/classes/[Yourproject]/Snippets/RespondentDetailsSnippet.php (copy from
library\Gems\snippets)
change the classname to [Yourproject]_Snippets_RespondentDetailsSnippet (keep it extending8.
to…)
in function addTableCells add your field at the appropriate position:9.

 // ROW 1
 $bridge->addItem('grs_studycode', null, array('class' =>
'strong'));
 $bridge->addItem('grs_phone_1');

 // ROW 2
 $bridge->addItem('grs_birthday');
 $bridge->addItem($address, $this->_('Address'), array('rowspan'
=> 2));

 // ROW 3
 $bridge->addItem('grs_email');

 // ROW 4 - example code: note the colspan to have this field
use 2 columns
 // $bridge->addItem('grs_studycode', null, array('colspan' =>
2));

to use more columns, look at this code:10.

 $bridge->caption($this->getCaption());
 //example code to change the number of columns over which the
fields will be distributed
 //$bridge->setColumnCount(2);

That's it! Don't forget to first clean the cache if you don't see the result of this code immediately.
Also don't forget to look at the quick start guide, installation, point 4 (uncomment line 8 in

http://www.php.net/array
http://www.php.net/array
http://www.php.net/array
http://www.php.net/array

2024/05/18 13:21 9/9 How to

GemsTracker - https://gemstracker.org/wiki/

application.ini).

Please note:

starting at point 3 you can see the use of the translation adapter that will translate your field
name
at point 4 the use of get/set the field order attribute is demonstrated
at point 5 the field is set to be a required field
As you can see in the last part, the details snippet can easily be changed to your preferences.

Icings on the cake:

add the translated fieldname to the appropriate langage files
add a validator (see above point 5 in applyEditSettings for an example)
change the view of this field by adding a class name and changing the css.

From:
https://gemstracker.org/wiki/ - GemsTracker

Permanent link:
https://gemstracker.org/wiki/doku.php?id=devzone:howto:start&rev=1547633080

Last update: 2020/03/12 12:08

https://gemstracker.org/wiki/
https://gemstracker.org/wiki/doku.php?id=devzone:howto:start&rev=1547633080

	How to
	How do I get started
	Getting started using events
	How do I debug the code
	How do I create my own controller
	How do I add my own controller to the menu?

	How do I change the displayed columns in the respondent/patient overview?
	How do I add a column in the respondent/patient details and overview?

